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Abstract

An anisotropic yield criterion for polycrystalline metals which uses texture data and takes advantage of
crystal symmetries is presented[ A linear transformation is developed to map an anisotropic yield surface
for a polycrystal to an appropriate isotropic yield surface[ The transformation developed re~ects the
symmetry of the material being modeled[ First\ the transformation is determined[ Then\ information regard!
ing the orientation distribution "texture# of the crystals in a polycrystalline aggregate is used to determine\
via averaging\ the transformation for the polycrystal[ The transformation\ along with appropriate isotropic
yield surface\ provides a phenomenological approach to modeling yield\ yet accounts for microstructural
texture[ The approach reduces to the Hill "0849# anisotropic plasticity theory under certain conditions[ The
yield surfaces and R!values for various face!centered!cubic " fcc# polycrystalline textures are computed by
this method[ Results compare favorably with those given by other theories\ and with experiment[ The
method proves to have the computational e.ciency of phenomenological approaches to modeling yield\
while e}ectively incorporating the physics of more complex crystallographic approaches[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

There are generally two approaches for determining yield surfaces in polycrystalline metals]
the continuum approach and the crystallographic approach[ The continuum approach has the
advantage of being relatively simple\ with yield surfaces de_ned in a functional form in terms of
stress and resistance to plastic ~ow[ The drawback of the continuum approach is that continuum
yield functions are often unable to capture the shape of a yield surface accurately[ These yield
functions generally do not account for material microstructure\ particularly microstructural

� Corresponding author[ Fax] 407 165 5914^ e!mail] maniaaÝrpi[edu
0 Currently at Institute of Nuclear Energy Research\ Lung!Tam\ Taiwan\ Republic of China[



A[M[ Maniatty et al[ : International Journal of Solids and Structures 25 "0888# 4220Ð42444221

texture\ which can a}ect surface shape signi_cantly[ Yet in many applications\ it is important to
accurately account for yield surface shape\ for example when modeling sheet forming and cal!
culating forming limits "see for example Lian et al[\ 0878#[ An alternative to the continuum
approach is the crystallographic approach\ which does attempt to account for the physics under!
lying yield surface shape by de_ning metal yielding behavior in terms of the microstructural
phenomenon of crystallographic slip[ The crystallographic method is better able to predict shapes
of yield surfaces\ but is a much more complex approach\ requiring time!consuming computations
to map out the yield surface[ The work presented herein is an attempt to bridge these two
approaches "continuum and crystallographic# by exploiting the symmetries found in each grain of
a polycrystalline metal\ and by making use of the isotropic plasticity equivalent "IPE# method of
Kara_llis and Boyce "0882#[ Because there are a large number of continuum yield models and
crystallographic yield models\ it is necessary to discuss those models that will form the basis of the
present approach[

In the continuum approach\ a phenomenological yield criterion\ which is a function of the stress\
is used to de_ne the yield surface in stress space[ For isotropic material behavior the Tresca and
von Mises yield criteria are the most widely used[ Hosford "0861# connected the Tresca and von
Mises criteria by proposing a generalized isotropic yield criterion which has the Tresca and von
Mises yield criteria as lower and upper bounds\ respectively[ Kara_llis and Boyce "0882# extended
Hosford|s criterion by incorporating a new upper bound[ Anisotropic continuum yield criteria
have also been proposed[ Hill "0849# developed a quadratic yield function for orthotropic materials
and later Barlat et al[ "0880# developed a non!quadratic yield function for orthotropic materials[
Kara_llis and Boyce "0882# introduced an anisotropic yield criterion formulated using the IPE
concept[ The criterion is an extension of their generalized isotropic yield criterion[ The method
they presented uses a linear mapping to model the connection between an anisotropic yield surface
and their previously!mentioned generalized isotropic yield surface[ The linear mapping can re~ect
the symmetries of the anisotropic material[ In the present work\ the IPE continuum approach to
anisotropic plasticity is connected to a crystallographic approach[

In crystallographic approaches to yield surface modeling\ the yield surface of a polycrystalline
aggregate is determined from the yielding behavior of each grain in the aggregate[ For moderately
textured polycrystals\ it is assumed that each grain has the same critical resolved shear stress on
each of its slip systems "Taylor and Elam\ 0814#[ Thus each grain has the same yield surface\ and
di}ers from the others only in its orientation[ The yield surface in each grain is determined from
the yielding behavior of the grain|s crystallographic slip systems[ Bishop and Hill "0840a\ b#\
using the principle of maximum work\ outlined a procedure for calculating the yield stresses of
polycrystalline aggregates given data about individual grain slip systems[ They used Taylor|s
"0827# assumption for the interaction law\ i[e[ they assumed that each grain undergoes the same
homogeneous deformation as the macroscopic deformation[ In their calculation\ Bishop and Hill
assumed a random texture\ so the result calculated described yielding of an isotropic polycrystalline
aggregate[ Following the same procedure\ Viana et al[ "0868# used di}erent textures to _nd the
isotropic and anisotropic yield surfaces in sheet metals in the "T00ÐT11# stress plane under plane
stress loading conditions "T being the stress tensor#[ Including the shear stress\ T01\ Barlat and
Richmond "0876# use the same approach to calculate the tricomponent yield surface for several
textures that are commonly observed after the deformation or recrystallization processes[ Barlat
et al[ "0886# have shown that the Bishop and Hill "0840a\ b# yield surfaces correspond well with
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experimentally determined yield surfaces for a number of anisotropic polycrystalline textures\
providing justi_cation for the application of Taylor and Elam|s "0814# hardening hypothesis and
Taylor|s "0827# interaction law to textured polycrystals[ Bishop and Hill "0840a# showed by
comparison to experiments that the application of Taylor|s hypothesis to isotropic polycrystals is
justi_able[

In the present work\ with the aid of the IPE method proposed by Kara_llis and Boyce "0882#\
a continuum yield function is developed for fcc polycrystalline metals[ The goal is to formulate a
criterion that is not only computationally e.cient\ but that also can account for microstructural
texture in modeling the yield surface[ In order to bring microstructural information into the
continuum model\ both of the Taylor assumptions mentioned above are used[ While the assump!
tions do provide for good agreement with experiments "Barlat et al[\ 0886#\ the present work limits
their application to modeling weakly!textured materials "49) random in all cases#[ This avoids
the theoretical di.culties that arise in the application of the hypotheses to polycrystals in which
grains may have pronounced heterogeneity in slip!system hardness and morphology[ To further
limit the reliance on the Taylor "0827# interaction law\ it is applied only to the plastic part of
polycrystalline deformation\ and only small to moderate deformations to the textured polycrystal
are considered[ The assumptions and limitations are used as a _rst step in the expected development
of a more sophisticated continuum model that more completely accounts for microstructural
features[ Precise modeling of crystallographic behavior\ as in the Bishop and Hill "0840a\ b#
model or subsequent self!consistent models by Hill "0854# and Harren "0880# would sacri_ce the
computational e.ciency that is a central goal of the present work[

To develop the continuum yield function\ it is _rst noted that if each slip system in a grain has
the same critical resolved shear stress\ it is expected that the yield criterion for each grain will
re~ect the natural symmetries of the grain|s lattice[ Crystallographic yield formulations have
not exploited these symmetries as much as possible[ The subsequent development includes the
appropriate crystal symmetries in the IPE formulation[ The crystallographic yield theory of Bishop
and Hill "0840a\ b# is used to determine the parameters for the IPE linear transformation tensor
for a single fcc crystal[ Then\ by using Taylor|s "0827# theory for grain interaction\ and by assuming
that rates of work in the anisotropic and IPE materials are equal\ it is possible to _nd the IPE
transformation tensor for a polycrystal\ using only polycrystalline texture data[ The yield pre!
dictions given by this method are compared to the results presented in Barlat and Richmond
"0876#\ which were computed using a crystallographic approach[ The criterion is also compared
with the Hill "0849# continuum criterion\ and is shown to be a generalization of that criterion[
Finally\ the R!values predicted by the new IPE method are investigated through comparison with
experimental data\ since in the past\ purely crystallographic approaches have generally not pre!
dicted R!values well "Kara_llis and Boyce\ 0882#[

1[ Isotropic plasticity equivalent "IPE# method

The IPE method presented by Kara_llis and Boyce "0882# assumes that there exists a fourth!
order linear transformation tensor\ L which transforms the actual second!order stress tensor\ T\
acting on an anisotropic material into a new second!order stress tensor\ S\ acting on an {isotropic
plasticity equivalent| material[ The tensor S is called the {isotropic plasticity equivalent| stress
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tensor[ The new stress tensor S is used in an isotropic yield criterion which in e}ect models the
transformed yield surface of the original anisotropic material[ In order to model an anisotropic
yield surface by this method\ it is necessary to _nd both the transformation tensor L and the
isotropic yield function that together allow for an accurate representation of a material|s aniso!
tropic behavior[

Henceforth\ quantities that refer to the actual anisotropic material will be said to lie in the
{physical| domain^ quantities that arise from application of the IPE transformation L will be said
to lie in the {IPE| domain\ and will be said to act on the {IPE| material[

1[0[ Sin`le crystals

In the following development\ cubic crystals\ speci_cally face!centered cubic " fcc# crystals\ are
considered[ Since both the actual stress T on the anisotropic material and the IPE stress S on the
{equivalent| isotropic material are symmetric second!order tensors\ both may be represented as
vectors\ according to the usual tensor contraction methods outlined by Nye "0846#[ Thus\

T � "T00\ T11\ T22\ 1T21\ 1T20\ 1T10# "0a#

S � "S00\ S11\ S22\ S21\ S20\ S10#[ "0b#

Similarly\ assuming the fourth!order transformation tensor L possesses both major and minor
symmetries Lijkl � Ljikl � Lijlk � Lklij\ it may be contracted to a 5×5 matrix that operates on the
vector form of T according to the rules of linear algebra[ In tensor notation

S � LðTŁ "1#

where\ following Gurtin "0870#\ brackets "ð Ł# indicate the operation of a fourth!order tensor on a
second!order tensor[ If the components of the physical stress tensor T are with respect to the lattice
coordinates\ in order to maintain cubic symmetry\ the matrix of components of L must have the
form

ðLŁ �

K

H

H

H

H

H

H

H

k

a c c 9 9 9

c a c 9 9 9

c c a 9 9 9

9 9 9 0
1
b 9 9

9 9 9 9 0
1
b 9

9 9 9 9 9 0
1
b

L

H

H

H

H

H

H

H

l

\ "2#

where a\ b and c are constants[ The components of "2# that transform the shear stresses are chosen
to be 0

1
b in order to simplify algebra in subsequent analyses[

As will be shown later\ if the yielding behavior is assumed to be independent of the mean stress\
then the constants a and c will be linearly related[ It is then possible to select c arbitrarily\ and
then determine a uniquely[ So\ c can be set equal to zero without altering the results[ Setting c
equal to zero reduces the matrix L given in "2# to a diagonal matrix\ when expressed with
respect to the lattice coordinates of the crystal[ A diagonal matrix L can be considered an a.ne
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transformation which {stretches| the yield surface along the axes of the six!dimensional stress space
"in coordinate system of the crystal#[

In addition to a de_nition of the transformation tensor L\ the IPE formulation requires the
selection of an isotropic yield criterion to govern the yielding behavior of the transformed IPE
stress[ The isotropic yield criterion used herein is the one proposed by Hosford "0861#[ It has the
form

=s0−s1 =m¦=s1−s2 =m¦=s2−s0 =m � 1Ym "3#

where s0\ s1\ and s2 are the principal stresses of the IPE stress tensor S\ Y is an arbitrarily!chosen
uniaxial yield stress for the IPE material\ and m is a material constant[ It should be noted that this
yield criterion reduces to the von Mises yield criterion for m � 1 and to the Tresca criterion for
m : �[ In addition\ this yield criterion predicts yielding that is independent of the mean stress[

To calibrate the IPE criterion\ it is necessary to determine the optimal parameters a and b that
_t the physical anisotropic yield surface to the isotropic yield surface de_ned by "3#[ The anisotropic
yield surface to be transformed is the crystallographic yield surface for an fcc single crystal derived
by Bishop and Hill "0840a\ b#[ Bishop and Hill "0840a\ b# showed that the slip!plane!based yield
surface of an fcc crystal is composed of 13 planes with 45 vertices in _ve!dimensional deviatoric
stress space[ These results are based on a rate!independent theory which postulates that yielding
occurs on a slip system when the resolved shear stress on that slip system reaches a critical value*
the critical resolved shear stress[ To calibrate the IPE model to the Bishop and Hill "0840a\ b#
crystallographic surface\ the IPE criterion will be _t to the crystallographic surface at the midpoints
of the 13 planes and at the 45 vertices[ Kocks et al[ "0872# have tabulated the yielding stress
states that correspond to the 45 vertices[ Transforming each of these stress states with the linear
transformation tensor L given in eqn "2# and then computing the principal stresses of the resulting
IPE stress tensors\ the following _ve categories of principal IPE stresses result[ "The number of
vertices that fall into each category is also listed[#

0[ ð 1
2
"a−c#t\ −0

2
"a−c#t\ −0

2
"a−c#tŁ\ "5 vertices#

1[ ðbt\ −0
1
bt\ −0

1
btŁ\ "7 vertices#

2[ ð9\ bt\ −btŁ\ "5 vertices#

3[ ð−0
5
"a−c#t\ 0

01
"a−c#t¦tz

0
05

"a−c#1¦0
1
b1\ 0

01
"a−c#t−tz

0
05

"a−c#1¦0
1
b1Ł\ "13 vertices#

4[ ð9\ ¦0
1
tz"a−c#1¦b1\ −0

1
tz"a−c#1¦b1Ł\ "01 vertices#[

In the above equations\ t � z5tc and tc is the critical resolved shear stress for each of the twelve
primary slip systems[ Following the same procedure\ the IPE stresses are computed for each of the
13 planes on the crystallographic yield surface at the midpoints of these planes[ The midpoints of
the planes are found by averaging the locations of the vertices bounding each of the planes[ The
principal stresses of the IPE stress tensors at the midpoints of each of these planes are the same\
namely]

5[ ð9\ ¦ 0
21

tz38"a−c#1¦051b1\ − 0
21

tz38"a−c#1¦051b1Ł\ "13 vertices#[
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The above equations demonstrate that only the value of "a−c# is important\ and the individual
values of a and c have no in~uence on the yield behavior\ as mentioned earlier[

For each set of principal stresses\ a residual function fi\ i � 0\ [ [ [ \ 5\ can be de_ned by substituting
the principal stresses into eqn "3# and rearranging it as

fi � =s0i
−s1i

=m¦=s1i
−s2i

=m¦=s2i
−s0i

=m−1Ym\ "4#

where f0\ f1\ f2\ f3 and f4 are residuals de_ned for the _ve categories of vertices\ and f5 is the residual
function at the midpoints of the planes[ An objective function F can be de_ned as

F � 5f 1
0¦7f 1

1¦5f 1
2¦13f 1

3¦01f 1
4¦13f 1

5¦"5f0¦7f1¦5f2¦13f3¦01f4¦13f5#1[ "5#

By minimizing the objective function F\ the optimal values of "a−c# and b "or just a and b if
c � 9# can be determined[ The objective function given by eqn "5# was constructed to allow the
transformed Bishop and Hill "0840a\ b# yield surface features listed above to simultaneously satisfy
the yield criterion given by eqn "3#[ The _rst six terms in the objective function are the residuals
for each of the six classes of yield surface features\ weighted by the number of occurrences of each
feature[ Each of these _rst six terms is squared\ in order to avoid non!zero positive and negative
residuals cancelling each other[ The last term in the objective function "in parentheses# stabilizes
the numerics of the minimization for high values of the exponent m[ In the numerical procedure\
each of the residuals is normalized by the e}ective Hosford "0861# yield stress Y "chosen by the
analyst# leading to residuals from the _rst six terms that become small enough to exceed machine
precision before convergence\ when m is large[ The last term provides the procedure with values
within machine precision with which to complete the minimization[

With c � 9\ the optimal values of a and b given by the objective function are listed in Table 0
for di}erent exponents m[ Projections of the IPE _t to the Bishop and Hill "0840a\ b# yield surface

Table 0
Optimal values of a and b and normalized residual
values mzF:tc corresponding to di}erent values of m

m a b mzF:tc

1 0[31941 9[89168 6[99903
3 0[26814 9[75601 2[21320
5 0[22890 9[70834 1[32437
7 0[20093 9[67045 1[94723

09 0[17629 9[64248 0[73096
01 0[15465 9[62226 0[58521
03 0[13533 9[60750 0[48128
05 0[11837 9[69642 0[40303
07 0[10373 9[58780 0[34208
19 0[19129 9[58086 0[39334
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Fig[ 0[ Bishop and Hill yield surface for a single fcc crystal and approximated surfaces calculated with the IPE method
using di}erent values of m on normalized T00ÐT11 plane[

for m � 3\ 7 and 01 are shown in Fig[ 0\ along with a projection of the Bishop and Hill "0840#
yield surface itself[ Notice in Table 0 and Fig[ 0 that the IPE surface approximation to the Bishop
and Hill "0840a\ b# yield surface is better for larger values of m\ since the corners in the surface
can be better approximated[

1[1[ Relation between IPE and Hill "0849# criteria

The IPE approach for modeling anisotropy can be viewed as a generalization of the continuum
approach developed by Hill "0849#[ Hill proposed modeling yield in anisotropic materials with a
function similar to the Mises yield function\ but with modi_cations to account for material
anisotropies up to orthotropic[ Hill|s function predicts yielding that is independent of hydrostatic
stress]

f Hill � a01"T00−T11#1¦a12"T11−T22#1¦a20"T22−T00#1

¦5a33T
1
01¦5a44T

1
12¦5a55T

1
02−1Y1[ "6#

The Y term in eqn "6# is an arbitrarily chosen {equivalent| yield stress for the material\ and the
coe.cients a are determined from a series of six yield tests by the relations

a01 � Y1 0
0

P1
¦

0

Q1
−

0

R11 a33 �
0
2

Y1 0
0

V11
a20 � Y1 0

0

R1
¦

0

P1
−

0

Q11 a44 �
0
2

Y1 0
0

T11
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a12 � Y1 0
0

Q1
¦

0

R1
−

0

P11 a55 �
0
2

Y1 0
0

U11 "7#

where P\ Q\ R are the yield stresses in uniaxial tension with respect to the principal axes of
anisotropy\ and T\ U\ V are the corresponding yield stresses in shear[

The IPE criterion\ which consists of both the transformation tensor L and the Hosford "0861#
yield function\ reduces to the Hill criterion when m � 1\ L has orthotropic symmetry and L has
the additional constraint that deviatoric tensors are transformed to the deviatoric tensors\ i[e[\

S? � LðT?Ł\ "8#

where prime "?# denotes the deviatoric part of the tensor[ This condition is necessary when yielding
in the physical domain is taken to be independent of the hydrostatic stress\ as it is in the Hill "0849#
criterion[ ðYielding in the IPE domain is always independent of the hydrostatic stress by Hosford|s
"0861# yield criterion\ eqn "3#[Ł To explicitly specify the constraints on L\ note that S? and T? are
de_ned as

S? � S−0
2
tr"S#I � LðTŁ−0

2
tr"LðTŁ#I\ "09a#

T? � T−0
2
tr"T#I\ "09b#

where I is the second!order identity tensor and tr" # is the trace operator[ Substituting eqns "09#
into "8#\ the condition for pressure!independent yield in the physical domain can be simpli_ed to

tr"LðTŁ#I � tr"T#LðIŁ\ "00a#

or\ in indicial notation

LijklTkldijdmn−LmntuTpqdpqdtu � 9\ "00b#

where dij is the Kronecker delta[ Factoring and simplifying eqn "00b#\ the constraints on the IPE
transformation L that produce deviatoric yield are found to be

"L0000−L1111# �"L1122−L0022#\ L0021¦L1121¦L2221 � 9\ "01a\b#

"L1111−L2222# �"L0022−L0011#\ L0020¦L1120¦L2220 � 9\ "01c\d#

"L2222−L0000# �"L0011−L1122#\ L0010¦L1110¦L2210 � 9[ "01e\f #

As long as these constraints are met\ yielding in the physical domain will be independent of the
hydrostatic stress[

Consider the transformation tensor L for a crystal with cubic symmetries\ given by eqn "2#[ The
components of this tensor identically satisfy eqns "01#\ so for a cubic crystal\ the IPE criterion can
readily reduce to the Hill criterion[ Using the form of L given in "2#\ the physical stress T can be
transformed to the IPE stress S\ which can in turn be substituted into the Hosford "0861# m � 1
function to produce a form of the IPE yield function for a material with cubic symmetry]

f IPE �"a−c#1"T00−T11#1¦"a−c#1"T11−T22#1¦"a−c#1"T22−T00#1

¦5b1T1
01¦5b1T1

12¦5b1T1
02−1Y1[ "02#
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Equation "02# is identical to the Hill "0849# criterion for a cubic crystal\ with
a01 � a12 � a20 �"a−c#1\ and a33 � a44 � a55 � b1[ Note that the IPE equivalent yield stress*which
is chosen arbitrarily*has been chosen to be identical to the Hill equivalent yield stress of eqn "6#[
Also note that\ as discussed earlier\ only one of the components a and c is independent[

For an orthotropic material\ the IPE transformation tensor displays orthotropic symmetries]

L �

K

H

H

H

H

H

H

H

k

a b c 9 9 9

b d e 9 9 9

c e f 9 9 9

9 9 9 0
1
` 9 9

9 9 9 9 0
1
h 9

9 9 9 9 9 0
1
j

L

H

H

H

H

H

H

H

l

[ "03#

Performing the same procedure using this form of L\ the relationship between the Hill "0849# and
IPE parameters is found to be]

a01 � "a1¦c1¦f 1−fa#¦ad−1ca¦3fc¦3d1−3dc−4df\

a12 � "a1¦c1¦f 1−fa#−4ad¦3ca−1fc¦3d1−3dc¦df\

a02 � "a1¦c1¦f 1−fa#¦ad−1ca−1fc−1d1¦1dc¦df\

a33 � j1\

a44 � `1\

a55 � h1\ "04a#

with the following constraints between IPE parameters]

"a−d# � "e−c#\

"d−f # � "c−b#[ "04b#

The constraints in eqn "04b# correspond to eqns "01a# and "01c#\ respectively[ A third constraint
on the IPE parameters is implicit in "04a#\ namely that a\ c\ and f are not independent[ Note that
the application of the constraints "01# allow the more general IPE criterion "with nine parameters#
to uniquely map to the Hill "0849# criterion "with six parameters to describe materials of the same
symmetry#[

The IPE criterion is more general than the Hill "0849# criterion\ in that it can model material
anisotropies greater than orthotropic and in that it may take forms that are non!quadratic "by
selecting the exponent m � 1#[ Examining eqns "02# and "04#\ it is also apparent that the IPE
criterion expressed in these equations provides a more general method for calibrating the Hill
"0849# model than the method of eqns "7#[ To illustrate] if the constant a in the Hill "0849# model
are calibrated to _t the crystallographic yield surface computed by Bishop and Hill "0840a\ b#\ one
_nds that
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Fig[ 1[ Comparison of Hill "0849# and IPE m � 1 and m � 03 approximations to the Bishop and Hill "0840a\ b#
crystallographic _t[ IPE _t parameters from Table 0[

a01 � a02 � a12 �
0
5

Y1 0
0

t1
c 1

a33 � a44 � a55 �
0
07

Y1 0
0

t1
c 1\ "05#

where Y is the arbitrarily chosen {equivalent| yield stress and tc is the critical resolved shear stress[
Equations "7# calibrate the _t in eqn "05# based on a {sample| of the crystal yield surface at six
points[ In contrast\ the IPE equivalents of the Hill a|s

a01 � a02 � a12 �"a−c#1\

a33 � a44 � a55 � b1\ "06#
are _t by the objective function to the crystal yield surface based on a sample of the surface at 79
points[ The _t of eqns "7# has the Hill "0849# continuum yield surface circumscribe the Bishop and
Hill "0840a\ b# crystallographic surface\ with intersections at each of the crystal surface vertices[
The IPE!based _t is weighted more toward the crystal yield surface plane midpoints[ Figure 1
displays a projection of both _ts in the T00ÐT01 plane\ along with a projection of the crystal yield
surface and a projection of a non!quadratic IPE yield surface[ The quadratic IPE yield function
exactly matches the Hill "0849# yield function "when both are calibrated to the Bishop and Hill
"0840a\ b# surface# when

"a−c# � 0[138128\

b � 9[610138[ "07#

1[2[ Polycrystals

In general\ each crystal "or grain# in a polycrystalline aggregate has an orientation associated
with it which may be de_ned by a rotation tensor between the global reference frame and the
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lattice reference frame[ Let Lc be the IPE transformation tensor for a single crystal with its lattice
oriented to align with the natural lattice coordinates and with components as given in eqn "2#[ Let
the number of grains in the polycrystal be denoted by N\ and let ` � 0\ [ [ [ \ N denote the speci_c
grains in the polycrystal[ The linear IPE transformation tensor for each grain in the polycrystal
with respect to a global orthonormal coordinate system can then be expressed in indicial notation
as]

L`
ijkl � R`

miR
`
njR

`
pkR

`
qlL

c
mnpq\ "08#

where L` is the linear transformation tensor for grain ` with respect to a _xed global reference
frame and R` is the rotation tensor from the global reference frame back to the lattice reference
frame for grain `[ As noted above\ that the components of L` have the symmetries
L`

ijkl � L`
jikl � L`

ijlk � L`
klij[

The linear transformation tensor of a polycrystalline aggregate can be determined from that of
each grain contained in the aggregate by averaging the e}ect of each grain[ The question is then\
what is the appropriate average to use< Kara_llis and Boyce "0882# proposed that the work
dissipation rate of the anisotropic material is equal to that of the IPE material[ Therefore

Wþ � T = Dp � S = dp � LðTŁ = dp "19#

where Wþ is the work dissipation rate due to plastic deformation\ Dp is the plastic rate of deformation
tensor on the physical material\ and dp is the plastic rate of deformation tensor on the IPE material[
The dot "=# denotes a tensor inner product de_ned as T = Dp 0 tr"TTDp# where superscript T denotes
the transpose and tr" # is the trace operator[ Because the components of L have the major
symmetries\ Lijkl � Lklij\ eqn "19# can be rewritten as

Wþ � T = Dp � T = LðdpŁ[ "10#

For eqn "10# to be satis_ed\

Dp � LðdpŁ¦V "11#

where V is a symmetric\ deviatoric\ second!order tensor orthogonal to T[ Assuming associated
~ow\ the rate of plastic deformation on the physical material\ Dp

ij\ is directed normal to the yield
surface\ expressed mathematically as

Dp
ij � l¾

1f
1Tij

\ f � =s0−s1 =m¦=s1−s2 =m¦=s2−s0 =m−1Ym[ "12#

Applying the chain rule to eqn "12# and substituting eqn "1#]

Dp
ij � l¾

1f
1Skl

1Skl

1Tij

� dp
klLklij\ dp

kl � l¾
1f

1Skl

\ "13#

where associated ~ow has been assumed in the IPE domain as well\ as expressed by the second eqn
in "13#[ Comparing "11# with "13#\ it can be seen that for normality to be satis_ed in both the
physical and IPE domain\ V � 9^ therefore\

Dp � LðdpŁ[ "14#
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The relation between deformation rates given in eqn "14# is assumed to hold for both a single
crystal and a polycrystalline aggregate[

If an aggregate is composed of N grains with various orientations\ the linear transformation
tensor of the aggregate can be derived by assuming that the work dissipation rates of the physical!
domain polycrystal and corresponding IPE material are the same[ In material micromechanics\
the macroscale stress and deformation rate are taken to be equal to the volume averages of the
microscale stresses and deformation rates[ Also\ it is standard to assume that the volume average
of the product of the stress and deformation tensors over any representative volume element
"RVE# is approximately equal to the product of their respective averages\ i[e[]

0
0
N

s
N

`�0

T` = D`1¼ 0
0
N

s
N

`�0

T`1 = 0
0
N

s
N

`�0

D`1[ "15a#

This assumption is strictly valid whenever "a# the rate of deformation in each grain is identical and
is equal to the macroscale rate of deformation "Taylor\ 0827 assumption#^ or when "b# the stress
in each grain is identical and is equal to the macroscale stress "Sachs\ 0817 assumption#[ Also\ if
the characteristic length of microscale features is suitably small\ the assumption is valid as well
"Nemat!Nasser and Hori\ 0882#[ Using the assumption of eqn "15a#\ the global work dissipation
rate for an aggregate Wþ can be expressed as

Wþ � 0
0
N

s
N

`�0

T`1 = 0
0
N

s
N

`�0

Dp`

1� TÞ = DÞp\ "15b#

where superscript ` denotes the `th grain and an overbar "Ð# indicates an arithmetic average[ It
should be noted that the averages de_ned in "15b# are volume averages if it is assumed that all of
the grains have approximately the same volume[

Using Taylor|s "0827# assumption that each grain within an aggregate undergoes the same
deformation rate as the whole\ eqn "15b# can be rewritten as

Wþ � TÞ = Dp\ "16#

where Dp � DÞp � Dp`
for ` � 0\ [ [ [ \ N[ In a similar way\ the work dissipation rate can be expressed

for an IPE material corresponding to an aggregate as

Wþ � 0
0
N

s
N

`�0

S`1 = 0
0
N

s
N

`�0

dp`

1� SÞ = dÞp\ "17#

where SÞ is the average "macroscopic# stress on the IPE material\ and d¹p is the average "macroscopic#
rate of deformation tensor on the IPE material[ Applying the relationship in eqn "14# to each grain
in eqn "17#\ using Taylor|s "0827# interaction law\ making use of the symmetries of L`\ and equating
to "16#]

Wþ � SÞ = 0
0
N

s
N

`�0

L`−0
ðDpŁ1� SÞ = 0

0
N

s
N

`�0

L`−0

1 ðDpŁ � SÞ = LÞ−0 ðDpŁ � LÞ−0 ðSÞŁ = Dp � TÞ = Dp\
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"18#

where LÞ is taken to be the linear transformation tensor for the aggregate on the macroscale[ So\

LÞ � 0
0
N

s
N

`�0

L`−0

1
−0

"29#

is used to de_ne the homogenized macroscopic linear transformation of the Cauchy stress to the
IPE stress[

It is important to note that the homogenized form LÞ given by eqn "29# will meet the constraints
of eqns "01# "which guarantee that yielding in the physical domain will be independent of the mean
stress# as long as the form of Lc used in the computations meets these constraints[ Consider _rst
that the transformation L`\ computed by eqn "08#\ will meet these constraints[ If T? is deviatoric\
then\ in global coordinates\ S will be given by

Sij � L`
ijmnT?mn � R`

piR
`
qjR

`
rmR`

snL
c
pqrsT?mn\ "20a#

or in direct notation

S � R`T
"Lc ðR`T?R`T

Ł#R`
cR`SR`T

� Lc ðR`T?R`T
Ł[ "20b#

The right!hand side of the second form in "20b# is deviatoric\

tr"R`T?R`T
# � tr"R`T

R`T?# � tr"T?# � 9\ "21a#

so S is also deviatoric\

tr"R`SR`T
# � tr"R`T

R`S# � tr"S# � 9\ "21b#

and thus L` and L`−0 meet the constraint]

S? � L` ðT?Ł\ L`−0
ðS?Ł � T?[ "22#

Now\ if it is assumed that the macroscale IPE stress SÞ? is deviatoric\ the relationship between SÞ?
and TÞ\ the macroscale physical stress\ is

0
0
N

s
N

`�0

L`−0

1 ðSÞ?Ł � 0
0
N

s
N

`�0

L`−0
ðSÞ?Ł1� TÞ[ "23#

Rearranging "23#\ it is apparent that each term on the left!hand side is deviatoric]

tr 0 s
N

`�0

L`−0
ðSÞ?Ł1� s

N

`�0

tr"L`−0
ðSÞ?Ł# � N tr"TÞ# � 9\ "24#

so TÞ is also deviatoric\ and LÞ meets the constraint

SÞ? � LÞðTÞ?Ł[ "25#

If the yielding in individual crystals of a polycrystal is pressure!independent\ the yielding of
the polycrystalline aggregate must also be pressure!independent[ Equation "25# shows that the
homogenization scheme of eqn "29# preserves on the macroscale the pressure!independent yielding
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of the microscale\ as would be necessary for the homogenization scheme to be legitimate[ Because
eqn "25# holds\ the IPE yield criterion may be used as a generalization of Hill|s "0849# criterion
not only for single crystals "as discussed in Section 1[1#\ but also for polycrystalline aggregates[

2[ R!values

The R!value is de_ned as the ratio of the transverse plastic strain increment to the thickness
strain increment during a uniaxial tensile test[ Usually\ the tensile tests will be performed at
di}erent angles with respect to the rolling direction in the plane of a sheet and the R!value will be
reported as a function of the angle[ This parameter is commonly used to indicate the degree of
anisotropy in rolled sheet metals[

Recall that under the assumption of associated ~ow\ the IPE transformation tensor L relates
not only the physical and IPE stresses\ but also the physical and IPE plastic rates of deformation\
as was shown in eqn "14#]

Dp � LðdpŁ[ "14#

Underlying this equation was the assumption of associated ~ow in both the IPE domain and the
physical domain[ Assuming associated ~ow on both the grain level and homogenized macroscopic
level\ eqn "14# applies to both the grains and the overall polycrystal[

The procedure for determining R!values follows immediately from this relation[ For a given
macroscopic stress\ TÞ\ use the linear transformation tensor in eqn "29# to determine the macroscopic
IPE stress SÞ[ Then using the relations in eqn "13# along with the yield function in "3#\ determine
the components of the rate of deformation tensor in terms of l¾[ Letting the increment of plastic
strain be approximated by dop

ij ¼ Dp
ij dt\ then the R!value can be expressed as the ratio

R �
dop

11

dop
22

¼
Dp

11

Dp
22

\ "26#

where the 0!\ 1! and 2!axes represent the tensile direction\ the transverse direction and the thickness
direction\ respectively[

3[ Numerical examples

The IPE method developed above is _rst used to compute the yield surfaces of fcc polycrystals
for some commonly observed textures[ These textures include the brass\ copper and S textures
"each with 49) random texture# which result from moderate deformation processes\ and the cube
and goss textures "also with 49) random texture# which form after recrystallization processes[
Table 1 gives the Miller indices of the ideal orientations for these special textures[ These textures
are generated by assuming that the grain orientations are rotationally symmetric Gaussian dis!
tributions about the ideal orientation of each texture\ which can be expressed as

`"v# � `"9# exp 0−
v1

1v1
91[ "27#
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Table 1
Miller indices of the ideal orientations of
several special textures

Texture Miller indices

Brass "009#ð00Þ1Ł
Copper "001#ð000ÞŁ
S "012#ð523ÞŁ
Cube "099#ð990Ł
Goss "009#ð990Ł

In eqn "27#\ `"9# is the density of the ideal orientation\ v9 represents the scatter width of the spread
and `"v# is the relative density of a given orientation rotated through an angle v from the ideal
orientation[

In order to maintain orthotropic symmetry\ four equivalent ideal orientations\ i[e[ "hkl#ðuvwŁ\
"h¹k¹l¹#ðuvwŁ\ "hkl#ðu¹v¹w¹ Ł and "h¹k¹l¹#ðu¹v¹w¹ Ł\ are used in creating the grain orientation distributions[
Following the procedure adopted by Lequeu et al[ "0876a#\ the orientations of each grain are
created according to eqn "27# with v9 � 4>[ Figures 2"a#Ð" f# show the "000# pole _gures of these
special textures and the random texture\ each _gure constructed of 399 grains[ In these _gures\
RD means the following direction of the sheet and TD is the transverse direction in the plane of
the sheet[

The uniaxial yield strength of the random texture is _rst calculated using the IPE method with
di}erent exponents m in the yield function eqn "3#[ For the isotropic aggregate that results from a
random texture\ Bishop and Hill "0840a\ b# and Viana et al[ "0868# have used crystallographic
considerations to calculate a relation between the critical resolved shear stress of a single crystal
and the macroscopic yield stress Y of the polycrystal[ The relationship for an fcc crystal:polycrystal
was found to be

Y � 2[95tc[ "28#

Compared with the IPE method outlined above\ the IPE prediction of yield stress is more or less
constant and identical to 2[95tc over a range of exponents m � 2 to m � 09[ The yield strength
corresponding to m � 5 is exactly 2[95tc\ and the value deviates from this by no more than 9[1tc

when m is not close to 5\ but is between 2 ¾ m ¾ 09[ Because the deviation from the BishopÐHill
result is greatest at lower values of m\ in the following examples\ only those m values which are in
the range 3 ¾ m ¾ 09 will be considered[

Barlat and Richmond "0876# use the Bishop and Hill "0840a\ b# model "with the Taylor\ 0827
interaction law# to construct yield surfaces for a number of textures that are 49) special:49)
random[ Pole _gures of the random and special textures used are shown in Figs 2"a#Ð" f#[ The IPE
method developed in this paper is used to calculate the yield surfaces of these same textures[ With
the IPE method\ the yield surfaces can be constructed using all six stress components[ However\
to simplify the problem\ only a plane stress condition is considered[ Figure 3 shows the yield
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Fig[ 2[ "000# pole _gure of di}erent textures modeled with 399 grains by assuming rotationally symmetric Gaussian
distribution with v9 � 4>[ "a# Random\ "b# brass\ "c# copper\ "d# S\ "e# cube\ "f# goss[

surfaces for a random texture computed for four di}erent values of m\ i[e[\ m � 3\ 5\ 7 and 09[ The
parameter s represents the ratio of shear stress to the yield strength for uniaxial tension in the
rolling direction\ i[e[ s � TÞ01:Y[ The yield surfaces corresponding to di}erent shear stress ratios s
are calculated\ and the projections of these yield surfaces on the normalized TÞ00ÐTÞ11 plane are
plotted[ The yield surfaces constructed by larger m have ~atter bounding planes[ This is expected\
since the yield function used\ eqn "3#\ becomes the straight!sided Tresca criterion when m
approaches in_nity[ Figure 4 plots the yield surfaces of the 49) brass:49) random texture\ which
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Fig[ 3[ Yield surfaces for a random texture with di}erent shear stress e}ect\ where s � TÞ01:Y[ Di}erent values of
exponent m are used] "a# m � 3^ "b# m � 5^ "c# m � 7^ "d# m � 09[

show a larger yield stress in the transverse direction "TÞ11# than in the rolling direction "TÞ00#[ Notice
that in Figs 4"c# and "d#\ the yield surfaces corresponding to s � 9[4 do not exist[ The ratio s � 9[4
is larger than the critical resolved shear stress ratio and so s � 9[4 corresponds to points on the
yield surface where TÞ00 � T11 � 9[ In general\ as larger values of m are used in the governing IPE
yield functions\ the magnitude of s that plots to the TÞ00ÐTÞ11 plane decreases[ The yield surfaces for
the 49) copper:49) random texture\ shown in Fig[ 5\ have larger yield stresses in the rolling
direction than in the transverse direction\ in direct contrast to the yield surfaces the 49) brass:49)
random texture[ Figure 6 shows the yield surfaces of the 49) S:49) random texture\ which is
similar to that of a random texture when s � 9[ When the shear stress e}ect is considered\ the
random and 49) S:49) random surfaces are quite di}erent[ Figures 7 and 8 show the yield
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Fig[ 4[ Yield surfaces for a texture including 49) brass texture and 49) random texture[ Di}erent values of exponent
m are used] "a# m � 3^ "b# m � 5^ "c# m � 7^ "d# m � 09[

surfaces for the 49) cube:49) random and 49) goss:49) random textures[ The 49) goss:49)
random texture exhibits strong anisotropy in the sheet plane\ with a signi_cantly larger yield stress
in the transverse direction than in the rolling direction[ The yield surfaces for the 49) cube:49)
random texture are similar to those of the purely random texture[ This similarity stems from the
fact that the cube texture has cubic properties which are symmetric with respect to both the rolling
direction and the transverse direction "see Fig[ 2"e##\ and thus the yield surfaces are symmetric
about the line TÞ00 � TÞ11[

Comparing Figs 3Ð8 with the results of Barlat and Richmond "0876#\ who use the Bishop and
Hill "0840a\ b# crystallographic method\ it is apparent that the Barlat and Richmond "0876# yield
surfaces have ~atter sides\ similar to those computed by the IPE method with m � 7[ Considering
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Fig[ 5[ Yield surface for a texture including 49) copper texture and 49) random texture[ Di}erent values of exponent
m are used] "a# m � 3^ "b# m � 5^ "c# m � 7^ "d# m � 09[

that the yield surface of a single fcc crystal is composed of planes\ it is expected that the yield
surfaces derived by a purely crystallographic approach like that of Bishop and Hill "0840a\ b# will
be ~at!sided[ In the IPE method\ because the yielding of a single fcc crystal is modeled by eqn "3#\
the computed surface may be either ~at or curved\ depending on the exponent m chosen[

The degree of anisotropy of a textured polycrystal is di.cult to evaluate from the yield surface^
R!values are generally used to serve this purpose[ To illustrate the e}ect of texture on the R!value\
R!values for various textures are calculated as a function of u\ the angle between the uniaxial
tensile direction and the rolling direction[ Figures 09"a#Ð"e# show the R!value distributions for the
textures with yield surfaces displayed in Figs 4Ð8[ For the 49) brass:49) random texture\ the
highest R!value is found around u � 49>\ with R ¼ 0 at u � 89> and R ³ 0 at u � 9>[ The highest
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Fig[ 6[ Yield surfaces for a texture including 49) S texture and 49) random texture[ Di}erent values of exponent m
are used] "a# m � 3^ "b# m � 5^ "c# m � 7^ "d# m � 09[

R!value for the 49) copper:49) random texture appears near u � 39>\ with R ¼ 0 at u � 9> and
R ³ 0 at u � 89>[ It is interesting to note that the R!value distribution of the 49) copper:49)
random texture is just like the distribution of the 49) brass:49) random texture re~ected about
u � 34>[ "This symmetry is similar to that seen in the yield surfaces of these two textures[# The R!
value distribution for the 49) S:49) random texture is nearly symmetric about u � 34>\ with the
highest value at u � 34> and the lowest value at u � 9> and u � 89>[ For the 49) cube:49)
random texture\ the R!value distribution is also symmetric about u � 34>\ but with the lowest R!
value at u � 34> and the highest R!value\ R � 0\ at u � 9> and u � 89>[ The R!value of the 49)
goss:49) random texture is very high at u � 89>^ it decays from its peak at u � 89> to a minimum
near u � 39>\ then increases slightly from u � 39> to u � 9>[ At u � 9>\ for the 49) goss:49)
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Fig[ 7[ Yield surfaces for a texture including 49) cube texture and 49) random texture[ Di}erent values of exponent
m are used] "a# m � 3^ "b# m � 5^ "c# m � 7^ "d# m � 09[

random texture R � 0[ The R!value distributions calculated by the IPE method are quite similar
to those obtained by Lequeu et al[ "0876a\ b# who used a continuum function to model the plastic
behavior of polycrystalline metals[ Figure 00 compares experimentally determined R!values for a
1997!T3 aluminum with the R!values computed by the IPE method[ As the _gure shows\ the IPE
R!values correspond qualitatively with those found in experiments[

4[ Conclusion

A continuum anisotropic yield criterion for textured metal polycrystals is developed by using a
homogenization scheme to link the continuum IPE method of Kara_llis and Boyce "0882# to the
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Fig[ 8[ Yield surfaces for a texture including 49) goss texture and 49) random texture[ Di}erent values of exponent
m are used] "a# m � 3^ "b# m � 5^ "c# m � 7^ "d# m � 09[

crystallographic method of Bishop and Hill "0840a\ b#[ The homogenization scheme developed
produces a continuum yield function for a polycrystal that accounts for the e}ect of polycrystalline
texture on yielding behavior\ and that also preserves on the macroscale the pressure!independent
yielding behavior observed on single crystals on the microscale[ This new IPE criterion can be
viewed as a generalization of the Hill "0849# anisotropic criterion\ adding to Hill|s criterion the
ability to describe non!quadratic yielding behavior\ the ability to account for microstructural
texture\ and the ability to choose the number of data points used to calibrate the model[ Yield
surfaces and R!values predicted by this method correspond well with the yield surfaces and R!
values predicted by more cumbersome crystallographic methods\ and the R!value predictions
correspond reasonably well with experimental data[ The method proves to obtain some of the
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Fig[ 09[ R!value distributions for the following textures] "a# brass^ "b# copper^ "c# S^ "d# cube^ "e# goss[

accuracy of crystallographic methods\ while preserving the computational e.ciency of other\ less
accurate phenomenological methods[

The model is particularly well!suited for implementation into design packages based on the _nite
element method[ Expected improvements in the homogenization method and the development of
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Fig[ 00[ Material anisotropy predicted by the IPE method and compared with experimental data for 1997!T3 sheet[ "a#
R!value\ "b# yield strengths[

evolution rules promise to give the method broad applicability in aiding the design with textured
polycrystalline metals[
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